Skip to content

Interpret

chromatinhd.models.pred.interpret.RegionMultiWindow

Bases: Flow

Interpret a pred model positionally by censoring windows of across multiple window sizes.

Source code in src/chromatinhd/models/pred/interpret/regionmultiwindow.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
class RegionMultiWindow(chd.flow.Flow):
    """
    Interpret a *pred* model positionally by censoring windows of across multiple window sizes.
    """

    design = chd.flow.Stored()
    """
    The design of the censoring windows.
    """

    regions = chd.flow.Stored(default=set)
    """
    The regions that have been scored.
    """

    scores = chd.flow.SparseDataset()
    interpolation = chd.flow.SparseDataset()
    censorer = Stored()

    @classmethod
    def create(
        cls, folds, transcriptome, fragments, censorer, path=None, phases=None, overwrite=False
    ) -> RegionMultiWindow:
        self = super().create(path, reset=overwrite)

        if phases is None:
            # phases = ["train", "validation", "test"]
            phases = ["validation", "test"]

        regions = fragments.regions.var.index

        coords_pointed = {
            regions.name: regions,
            "fold": pd.Index(range(len(folds)), name="fold"),
            "phase": pd.Index(phases, name="phase"),
        }
        coords_fixed = {
            censorer.design.index.name: censorer.design.index[1:],
        }

        self.censorer = censorer

        design_censorer = censorer.design

        if not self.o.scores.exists(self):
            self.scores = chd.sparse.SparseDataset.create(
                self.path / "scores",
                variables={
                    "deltacor": {
                        "dimensions": (regions.name, "fold", "phase", design_censorer.index.name),
                        "dtype": np.float32,
                    },
                    "lost": {
                        "dimensions": (regions.name, "fold", "phase", design_censorer.index.name),
                        "dtype": np.float32,
                    },
                    "effect": {
                        "dimensions": (regions.name, "fold", "phase", design_censorer.index.name),
                        "dtype": np.float32,
                    },
                    "scored": {
                        "dimensions": (regions.name, "fold"),
                        "dtype": bool,
                        "sparse": False,
                    },
                },
                coords_pointed=coords_pointed,
                coords_fixed=coords_fixed,
            )

        if not self.o.interpolation.exists(self):
            positions_oi = np.arange(
                self.design["window_start"].min(),
                self.design["window_end"].max() + 1,
                10,
            )

            self.design_interpolation = pd.DataFrame(
                {
                    "position": positions_oi,
                }
            ).set_index("position")

            self.interpolation = chd.sparse.SparseDataset.create(
                self.path / "interpolation",
                variables={
                    "deltacor": {
                        "dimensions": (regions.name, self.design_interpolation.index.name),
                        "dtype": np.float32,
                    },
                    "lost": {"dimensions": (regions.name, self.design_interpolation.index.name), "dtype": np.float32},
                    "effect": {"dimensions": (regions.name, self.design_interpolation.index.name), "dtype": np.float32},
                    "interpolated": {"dimensions": (regions.name,), "dtype": bool, "sparse": False},
                },
                coords_pointed={regions.name: regions},
                coords_fixed={"position": self.design_interpolation.index},
            )

        return self

    def score(
        self,
        models,
        folds=None,
        fragments=None,
        transcriptome=None,
        regions=None,
        force=False,
        device=None,
        min_fragments=3,
    ):
        force_ = force

        if regions is None:
            # get regions from models
            if models.regions_oi is not None:
                regions = models.regions_oi
            else:
                regions = self.scores.coords_pointed[list(self.scores.coords_pointed)[0]]

        if folds is None:
            folds = models.folds

        pbar = tqdm.tqdm(regions, leave=False)

        for region in pbar:
            pbar.set_description(region)

            for fold_ix, fold in enumerate(folds):
                force = force_
                if not self.scores["scored"][region, fold_ix]:
                    force = True

                if force:
                    model_name = f"{region}_{fold_ix}"
                    if model_name not in models:
                        continue

                    pbar.set_description(region + " " + str(fold_ix))

                    model = models[model_name]
                    predicted, expected, n_fragments = model.get_prediction_censored(
                        fragments=fragments,
                        transcriptome=transcriptome,
                        censorer=self.censorer,
                        cell_ixs=np.concatenate([fold["cells_validation"], fold["cells_test"]]),
                        regions=[region],
                        device=device,
                        min_fragments=min_fragments,
                    )

                    # select 1st region, given that we're working with one region anyway
                    predicted = predicted[..., 0]
                    expected = expected[..., 0]
                    n_fragments = n_fragments[..., 0]

                    cor = chd.utils.paircor(predicted, expected, dim=-1)
                    deltacor = cor[1:] - cor[0]

                    lost = (n_fragments[0] - n_fragments[1:]).mean(-1)

                    effect = (predicted[0] - predicted[1:]).mean(-1)

                    self.scores["deltacor"][region, fold_ix, "test"] = deltacor
                    self.scores["lost"][region, fold_ix, "test"] = lost
                    self.scores["effect"][region, fold_ix, "test"] = effect
                    self.scores["scored"][region, fold_ix] = True

        return self

    def score2(
        self,
        models,
        folds=None,
        fragments=None,
        transcriptome=None,
        regions=None,
        force=False,
        device=None,
        min_fragments=3,
    ):
        force_ = force

        if regions is None:
            # get regions from models
            if models.regions_oi is not None:
                regions = models.regions_oi
            else:
                regions = self.scores.coords_pointed[list(self.scores.coords_pointed)[0]]

        if folds is None:
            folds = models.folds

        pbar = tqdm.tqdm(regions, leave=False)

        for region in pbar:
            pbar.set_description(region)

            for fold_ix, fold in enumerate(folds):
                force = force_
                if not self.scores["scored"][region, fold_ix]:
                    force = True

                if force:
                    model_name = f"{region}_{fold_ix}"
                    if model_name not in models:
                        continue

                    pbar.set_description(region + " " + str(fold_ix))

                    model = models[model_name]
                    deltacor, lost, effect = model.get_performance_censored(
                        fragments=fragments,
                        transcriptome=transcriptome,
                        censorer=self.censorer,
                        cell_ixs=np.concatenate([fold["cells_validation"], fold["cells_test"]]),
                        regions=[region],
                        device=device,
                        min_fragments=min_fragments,
                    )

                    self.scores["deltacor"][region, fold_ix, "test"] = deltacor
                    self.scores["lost"][region, fold_ix, "test"] = lost
                    self.scores["effect"][region, fold_ix, "test"] = effect
                    self.scores["scored"][region, fold_ix] = True

        return self

    @property
    def design(self):
        return self.censorer.design.iloc[1:]

    def interpolate(self, regions=None, force=False, pbar=True):
        force_ = force

        if regions is None:
            regions = self.scores.coords_pointed[list(self.scores.coords_pointed)[0]]

        progress = regions
        if pbar:
            progress = tqdm.tqdm(progress, leave=False)

        for region in progress:
            if pbar:
                progress.set_description(region)

            if not all([self.scores["scored"][region, fold_ix] for fold_ix in self.scores.coords_pointed["fold"]]):
                continue

            force = force_
            if not self.interpolation["interpolated"][region]:
                force = True

            if force:
                deltacor, lost, effect = self._interpolate(region)
                self.interpolation["deltacor"][region] = deltacor
                self.interpolation["effect"][region] = effect
                self.interpolation["lost"][region] = lost
                self.interpolation["interpolated"][region] = True

        return self

    def _interpolate(self, region):
        deltacors = []
        effects = []
        losts = []
        for fold_ix in self.scores.coords_pointed["fold"]:
            deltacors.append(self.scores["deltacor"][region, fold_ix, "test"])
            effects.append(self.scores["effect"][region, fold_ix, "test"])
            losts.append(self.scores["lost"][region, fold_ix, "test"])
        deltacors = np.stack(deltacors)
        effects = np.stack(effects)
        losts = np.stack(losts)

        scores_statistical = []
        for i in range(deltacors.shape[1]):
            if deltacors.shape[0] > 1:
                scores_statistical.append(scipy.stats.ttest_1samp(deltacors[:, i], 0, alternative="less").pvalue)
            else:
                scores_statistical.append(0.0)
        scores_statistical = pd.DataFrame({"pvalue": scores_statistical})
        scores_statistical["qval"] = fdr_nan(scores_statistical["pvalue"])

        plotdata = pd.DataFrame(
            {
                "deltacor": deltacors.mean(0),
                "effect": effects.mean(0),
                "lost": losts.mean(0),
            },
            index=self.design.index,
        )
        plotdata = self.design.join(plotdata)

        plotdata["qval"] = scores_statistical["qval"].values

        window_sizes_info = pd.DataFrame({"window_size": self.design["window_size"].unique()}).set_index("window_size")
        window_sizes_info["ix"] = np.arange(len(window_sizes_info))

        # interpolate
        positions_oi = np.arange(
            self.design["window_start"].min(),
            self.design["window_end"].max() + 1,
            10,
        )

        deltacor_interpolated = np.zeros((len(window_sizes_info), len(positions_oi)))
        lost_interpolated = np.zeros((len(window_sizes_info), len(positions_oi)))
        effect_interpolated = np.zeros((len(window_sizes_info), len(positions_oi)))
        for window_size, window_size_info in window_sizes_info.iterrows():
            plotdata_oi = plotdata.query("window_size == @window_size")
            x = plotdata_oi["window_mid"].values.copy()
            y = plotdata_oi["deltacor"].values.copy()
            # y[(plotdata_oi["qval"] > 0.2) | pd.isnull(plotdata_oi["qval"])] = 0.0
            deltacor_interpolated_ = np.clip(
                np.interp(positions_oi, x, y) / window_size * 1000,
                -np.inf,
                0,
            )
            deltacor_interpolated[window_size_info["ix"], :] = deltacor_interpolated_

            lost_interpolated_ = (
                np.interp(positions_oi, plotdata_oi["window_mid"], plotdata_oi["lost"]) / window_size * 1000
            )
            lost_interpolated[window_size_info["ix"], :] = lost_interpolated_

            effect_interpolated_ = (
                np.interp(
                    positions_oi,
                    plotdata_oi["window_mid"],
                    plotdata_oi["effect"],
                )
                / window_size
                * 1000
            )
            effect_interpolated[window_size_info["ix"], :] = effect_interpolated_
        return deltacor_interpolated.mean(0), lost_interpolated.mean(0), effect_interpolated.mean(0)

    def get_plotdata(self, region):
        if not self.interpolation["interpolated"][region]:
            raise ValueError(f"Region {region} not interpolated. Run .interpolate() first.")

        plotdata = self.interpolation.sel_xr(region, variables=["deltacor", "lost", "effect"]).to_pandas()

        return plotdata

    def get_scoring_path(self, region):
        path = self.path / f"{region}"
        path.mkdir(parents=True, exist_ok=True)
        return path

    def select_windows(self, region_id, max_merge_distance=500, min_length=50, padding=500, lost_cutoff=0.5):
        from scipy.ndimage import convolve

        def spread_true(arr, width=5):
            kernel = np.ones(width, dtype=bool)
            result = convolve(arr, kernel, mode="constant", cval=False)
            result = result != 0
            return result

        plotdata = self.get_plotdata(region_id)
        selection = pd.DataFrame({"chosen": (plotdata["lost"] > lost_cutoff)})

        # add padding
        step = plotdata.index.get_level_values("position")[1] - plotdata.index.get_level_values("position")[0]
        k_padding = int(padding // step)
        selection["chosen"] = spread_true(selection["chosen"], width=k_padding)

        # select all contiguous regions where chosen is true
        selection["selection"] = selection["chosen"].cumsum()

        regions = pd.DataFrame(
            {
                "start": selection.index[
                    (np.diff(np.pad(selection["chosen"], (1, 1), constant_values=False).astype(int)) == 1)[:-1]
                ],
                "end": selection.index[
                    (np.diff(np.pad(selection["chosen"], (1, 1), constant_values=False).astype(int)) == -1)[1:]
                ],
            }
        )

        # merge regions that are close to each other
        regions["distance_to_next"] = regions["start"].shift(-1) - regions["end"]

        regions["merge"] = (regions["distance_to_next"] < max_merge_distance).fillna(False)
        regions["group"] = (~regions["merge"]).cumsum().shift(1).fillna(0).astype(int)
        regions = (
            regions.groupby("group")
            .agg({"start": "min", "end": "max", "distance_to_next": "last"})
            .reset_index(drop=True)
        )

        # filter on length
        regions["length"] = regions["end"] - regions["start"]
        regions = regions[regions["length"] > min_length]

        return regions

    def extract_predictive_windows(self, region_id=None, deltacor_cutoff=-0.001):
        """
        Extract predictive windows for one (or more) regions
        """

        feature_name = list(self.scores.coords_pointed.keys())[0]

        if region_id is None:
            region_id = self.scores.coords_pointed[feature_name]

        if isinstance(region_id, str):
            region_id = [region_id]

        extracted = []

        for region_id in region_id:
            if self.interpolation["interpolated"][region_id]:
                plotdata = self.get_plotdata(region_id)
                plotdata["chosen"] = (plotdata["deltacor"] < deltacor_cutoff) & (plotdata["effect"] > 0)

                extracted_region_positive = pd.DataFrame(
                    {
                        "start": plotdata.index[
                            (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == 1)[:-1]
                        ].astype(int),
                        "end": plotdata.index[
                            (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == -1)[1:]
                        ].astype(int),
                        feature_name: region_id,
                        "effect_direction": +1,
                    }
                )
                extracted.append(extracted_region_positive)

                plotdata["chosen"] = (plotdata["deltacor"] < deltacor_cutoff) & (plotdata["effect"] < 0)
                extracted_region_negative = pd.DataFrame(
                    {
                        "start": plotdata.index[
                            (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == 1)[:-1]
                        ],
                        "end": plotdata.index[
                            (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == -1)[1:]
                        ],
                        feature_name: region_id,
                        "effect_direction": -1,
                    }
                )
                extracted.append(extracted_region_negative)

        return pd.concat(extracted)

regions = chd.flow.Stored(default=set) class-attribute instance-attribute

The regions that have been scored.

extract_predictive_windows(region_id=None, deltacor_cutoff=-0.001)

Extract predictive windows for one (or more) regions

Source code in src/chromatinhd/models/pred/interpret/regionmultiwindow.py
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def extract_predictive_windows(self, region_id=None, deltacor_cutoff=-0.001):
    """
    Extract predictive windows for one (or more) regions
    """

    feature_name = list(self.scores.coords_pointed.keys())[0]

    if region_id is None:
        region_id = self.scores.coords_pointed[feature_name]

    if isinstance(region_id, str):
        region_id = [region_id]

    extracted = []

    for region_id in region_id:
        if self.interpolation["interpolated"][region_id]:
            plotdata = self.get_plotdata(region_id)
            plotdata["chosen"] = (plotdata["deltacor"] < deltacor_cutoff) & (plotdata["effect"] > 0)

            extracted_region_positive = pd.DataFrame(
                {
                    "start": plotdata.index[
                        (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == 1)[:-1]
                    ].astype(int),
                    "end": plotdata.index[
                        (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == -1)[1:]
                    ].astype(int),
                    feature_name: region_id,
                    "effect_direction": +1,
                }
            )
            extracted.append(extracted_region_positive)

            plotdata["chosen"] = (plotdata["deltacor"] < deltacor_cutoff) & (plotdata["effect"] < 0)
            extracted_region_negative = pd.DataFrame(
                {
                    "start": plotdata.index[
                        (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == 1)[:-1]
                    ],
                    "end": plotdata.index[
                        (np.diff(np.pad(plotdata["chosen"], (1, 1), constant_values=False).astype(int)) == -1)[1:]
                    ],
                    feature_name: region_id,
                    "effect_direction": -1,
                }
            )
            extracted.append(extracted_region_negative)

    return pd.concat(extracted)

chromatinhd.models.pred.interpret.RegionPairWindow

Bases: Flow

Interpret a pred model positionally by censoring windows and comparing the decrease in predictivity per cell between pairs of windows

Source code in src/chromatinhd/models/pred/interpret/regionpairwindow.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
class RegionPairWindow(chd.flow.Flow):
    """
    Interpret a *pred* model positionally by censoring windows and comparing
    the decrease in predictivity per cell between pairs of windows
    """

    design = chd.flow.Stored()

    scores = StoredDict(Dataset)
    interaction = StoredDict(DataArray)

    def score(
        self,
        models: Models,
        censorer,
        regions: Optional[List] = None,
        folds=None,
        transcriptome=None,
        fragments=None,
        force=False,
        device=None,
    ):
        """
        Score the models

        Parameters:
            fragments:
                the fragments
            transcriptome:
                the transcriptome
            models:
                the models
            folds:
                the folds
            regions:
                which regions to score, defaults to all

        """
        force_ = force
        design = censorer.design.iloc[1:].copy()
        self.design = design

        if regions is None:
            regions = fragments.var.index

        if device is None:
            device = get_default_device()

        if folds is None:
            folds = models.folds

        pbar = tqdm.tqdm(regions, leave=False)
        for region in pbar:
            pbar.set_description(region)

            force = force_

            if region not in self.scores:
                force = True

            deltacor_folds = []
            copredictivity_folds = []
            lost_folds = []

            if force:
                for fold_ix, fold in enumerate(folds):
                    model_name = f"{region}_{fold_ix}"
                    if model_name not in models:
                        continue
                        raise ValueError(f"Model {model_name} not found")

                    pbar.set_description(region + " " + str(fold_ix))

                    model = models[model_name]
                    predicted, expected, n_fragments = model.get_prediction_censored(
                        fragments=fragments,
                        transcriptome=transcriptome,
                        censorer=censorer,
                        cell_ixs=np.concatenate([fold["cells_validation"], fold["cells_test"]]),
                        regions=[region],
                        device=device,
                    )

                    # select 1st region, given that we're working with one region anyway
                    predicted = predicted[..., 0]
                    expected = expected[..., 0]
                    n_fragments = n_fragments[..., 0]

                    # calculate delta cor per cell
                    predicted_censored = predicted[1:]
                    predicted_full = predicted[0][None, ...]
                    predicted_full_norm = zscore(predicted_full, 1)
                    predicted_censored_norm = zscore_relative(predicted_censored, predicted_full, 1)

                    expected_norm = zscore(expected[None, ...], 1)

                    celldeltacor = -np.abs(predicted_censored_norm - expected_norm) - -np.abs(
                        predicted_full_norm - expected_norm
                    )
                    with np.errstate(divide="ignore", invalid="ignore"):
                        copredictivity = np.corrcoef(celldeltacor)
                    copredictivity[np.isnan(copredictivity)] = 0.0

                    copredictivity_folds.append(copredictivity)

                    cor = chd.utils.paircor(predicted, expected, dim=-1)
                    deltacor = cor[1:] - cor[0]

                    lost = (n_fragments[0] - n_fragments[1:]).mean(-1)

                    deltacor_folds.append(deltacor)
                    lost_folds.append(lost)

                if len(lost_folds) == 0:
                    continue

                lost_folds = np.stack(lost_folds, 0)
                deltacor_folds = np.stack(deltacor_folds, 0)
                copredictivity_folds = np.stack(copredictivity_folds, 0)

                result = xr.Dataset(
                    {
                        "deltacor": xr.DataArray(
                            deltacor_folds,
                            coords=[
                                ("fold", np.arange(len(folds))),
                                ("window", design.index),
                            ],
                        ),
                        "lost": xr.DataArray(
                            lost_folds,
                            coords=[
                                ("fold", np.arange(len(folds))),
                                ("window", design.index),
                            ],
                        ),
                    }
                )

                windows_oi = lost_folds.mean(0) > 1e-3
                windows_oi = np.ones(len(design), dtype=bool)

                interaction = xr.DataArray(
                    copredictivity_folds[:, windows_oi][:, :, windows_oi],
                    coords=[
                        ("fold", np.arange(len(folds))),
                        ("window1", design.index[windows_oi]),
                        ("window2", design.index[windows_oi]),
                    ],
                )

                self.scores[region] = result
                self.interaction[region] = interaction

        return self

    def get_plotdata(self, region, windows=None):
        """
        Get plotdata for a region
        """

        if windows is None:
            windows = self.design
        else:
            x = self.design[["window_start", "window_end"]].values
            y = windows[["start", "end"]].values

            windows = self.design.loc[chromatinhd.utils.intervals.interval_contains_inclusive(x, y)]

        plotdata_windows = self.scores[region].mean("fold").to_dataframe()
        plotdata_interaction = self.interaction[region].mean("fold").to_pandas().unstack().to_frame("cor")

        plotdata_interaction = (
            plotdata_interaction.copy()
            .join(plotdata_windows.rename(columns=lambda x: x + "1"), on="window1")
            .join(plotdata_windows.rename(columns=lambda x: x + "2"), on="window2")
        )

        # make plotdata, making sure we have all window combinations, otherwise nan
        plotdata = (
            pd.DataFrame(itertools.combinations(windows.index, 2), columns=["window1", "window2"])
            .set_index(["window1", "window2"])
            .join(plotdata_interaction)
        )
        plotdata.loc[np.isnan(plotdata["cor"]), "cor"] = 0.0
        plotdata["dist"] = (
            windows.loc[plotdata.index.get_level_values("window2"), "window_mid"].values
            - windows.loc[plotdata.index.get_level_values("window1"), "window_mid"].values
        )

        plotdata.loc[plotdata["dist"] < 1000, "cor"] = 0.0

        plotdata = plotdata.query("dist > 0")

        return plotdata

get_plotdata(region, windows=None)

Get plotdata for a region

Source code in src/chromatinhd/models/pred/interpret/regionpairwindow.py
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def get_plotdata(self, region, windows=None):
    """
    Get plotdata for a region
    """

    if windows is None:
        windows = self.design
    else:
        x = self.design[["window_start", "window_end"]].values
        y = windows[["start", "end"]].values

        windows = self.design.loc[chromatinhd.utils.intervals.interval_contains_inclusive(x, y)]

    plotdata_windows = self.scores[region].mean("fold").to_dataframe()
    plotdata_interaction = self.interaction[region].mean("fold").to_pandas().unstack().to_frame("cor")

    plotdata_interaction = (
        plotdata_interaction.copy()
        .join(plotdata_windows.rename(columns=lambda x: x + "1"), on="window1")
        .join(plotdata_windows.rename(columns=lambda x: x + "2"), on="window2")
    )

    # make plotdata, making sure we have all window combinations, otherwise nan
    plotdata = (
        pd.DataFrame(itertools.combinations(windows.index, 2), columns=["window1", "window2"])
        .set_index(["window1", "window2"])
        .join(plotdata_interaction)
    )
    plotdata.loc[np.isnan(plotdata["cor"]), "cor"] = 0.0
    plotdata["dist"] = (
        windows.loc[plotdata.index.get_level_values("window2"), "window_mid"].values
        - windows.loc[plotdata.index.get_level_values("window1"), "window_mid"].values
    )

    plotdata.loc[plotdata["dist"] < 1000, "cor"] = 0.0

    plotdata = plotdata.query("dist > 0")

    return plotdata

score(models, censorer, regions=None, folds=None, transcriptome=None, fragments=None, force=False, device=None)

Score the models

Parameters:

Name Type Description Default
fragments

the fragments

None
transcriptome

the transcriptome

None
models Models

the models

required
folds

the folds

None
regions Optional[List]

which regions to score, defaults to all

None
Source code in src/chromatinhd/models/pred/interpret/regionpairwindow.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
def score(
    self,
    models: Models,
    censorer,
    regions: Optional[List] = None,
    folds=None,
    transcriptome=None,
    fragments=None,
    force=False,
    device=None,
):
    """
    Score the models

    Parameters:
        fragments:
            the fragments
        transcriptome:
            the transcriptome
        models:
            the models
        folds:
            the folds
        regions:
            which regions to score, defaults to all

    """
    force_ = force
    design = censorer.design.iloc[1:].copy()
    self.design = design

    if regions is None:
        regions = fragments.var.index

    if device is None:
        device = get_default_device()

    if folds is None:
        folds = models.folds

    pbar = tqdm.tqdm(regions, leave=False)
    for region in pbar:
        pbar.set_description(region)

        force = force_

        if region not in self.scores:
            force = True

        deltacor_folds = []
        copredictivity_folds = []
        lost_folds = []

        if force:
            for fold_ix, fold in enumerate(folds):
                model_name = f"{region}_{fold_ix}"
                if model_name not in models:
                    continue
                    raise ValueError(f"Model {model_name} not found")

                pbar.set_description(region + " " + str(fold_ix))

                model = models[model_name]
                predicted, expected, n_fragments = model.get_prediction_censored(
                    fragments=fragments,
                    transcriptome=transcriptome,
                    censorer=censorer,
                    cell_ixs=np.concatenate([fold["cells_validation"], fold["cells_test"]]),
                    regions=[region],
                    device=device,
                )

                # select 1st region, given that we're working with one region anyway
                predicted = predicted[..., 0]
                expected = expected[..., 0]
                n_fragments = n_fragments[..., 0]

                # calculate delta cor per cell
                predicted_censored = predicted[1:]
                predicted_full = predicted[0][None, ...]
                predicted_full_norm = zscore(predicted_full, 1)
                predicted_censored_norm = zscore_relative(predicted_censored, predicted_full, 1)

                expected_norm = zscore(expected[None, ...], 1)

                celldeltacor = -np.abs(predicted_censored_norm - expected_norm) - -np.abs(
                    predicted_full_norm - expected_norm
                )
                with np.errstate(divide="ignore", invalid="ignore"):
                    copredictivity = np.corrcoef(celldeltacor)
                copredictivity[np.isnan(copredictivity)] = 0.0

                copredictivity_folds.append(copredictivity)

                cor = chd.utils.paircor(predicted, expected, dim=-1)
                deltacor = cor[1:] - cor[0]

                lost = (n_fragments[0] - n_fragments[1:]).mean(-1)

                deltacor_folds.append(deltacor)
                lost_folds.append(lost)

            if len(lost_folds) == 0:
                continue

            lost_folds = np.stack(lost_folds, 0)
            deltacor_folds = np.stack(deltacor_folds, 0)
            copredictivity_folds = np.stack(copredictivity_folds, 0)

            result = xr.Dataset(
                {
                    "deltacor": xr.DataArray(
                        deltacor_folds,
                        coords=[
                            ("fold", np.arange(len(folds))),
                            ("window", design.index),
                        ],
                    ),
                    "lost": xr.DataArray(
                        lost_folds,
                        coords=[
                            ("fold", np.arange(len(folds))),
                            ("window", design.index),
                        ],
                    ),
                }
            )

            windows_oi = lost_folds.mean(0) > 1e-3
            windows_oi = np.ones(len(design), dtype=bool)

            interaction = xr.DataArray(
                copredictivity_folds[:, windows_oi][:, :, windows_oi],
                coords=[
                    ("fold", np.arange(len(folds))),
                    ("window1", design.index[windows_oi]),
                    ("window2", design.index[windows_oi]),
                ],
            )

            self.scores[region] = result
            self.interaction[region] = interaction

    return self